категории | RSS

Как создать идеальное здание — решение прямиком из природы

Размеры термитников могут быть впечатляющими. Некоторые виды термитов строят гнезда высотой до 9 метров

Современная архитектура и строительство ориентируются на важные тенденции, которые направлены на обеспечение комфорта, энергоэффективности и устойчивости зданий. Интересно, что многие из этих идей черпают вдохновение из природы, которая является уникальным источником разнообразных подходов, успешно применяемых нами. В этом контексте ученые обратили внимание на термитов и их «домики». Они показали, что решетчатая сеть туннелей вокруг термитника способна перехватывать ветер, создавая внутреннюю турбулентность, которая обеспечивает вентиляцию и регулирование климата внутри. Учитывая, что внутренний климат зданий является важным фактором, влияющим на благополучие и здоровье людей, эти принципы могут быть применены для создания комфортных условий в строениях, возведенных человеком, и снижения энергопотребления.

Уникальные строения природы

Известно около 2000 видов термитов, среди которых некоторые выступают в роли экосистемных инженеров. Строительство термитников определенными родами приводит к созданию сооружений высотой до восьми метров, что делает их одними из самых крупных биологических конструкций на планете. За миллионы лет естественный отбор совершенствовал дизайн термитников. Исследователи задаются вопросом: что могут извлечь из этого человеческие архитекторы и инженеры?

Термитники служат не только жилищем для термитов, но и выполняют важные функции в экосистеме. Они обеспечивают почву питательными веществами и помогают улучшать ее структуру.

В недавнем исследовании, опубликованном в журнале Frontiers in Materials, ученые представили, как мы можем черпать уроки от термитников в создании комфортного внутреннего климата в наших зданиях без необходимости использовать системы кондиционирования воздуха и, следовательно, без отрицательного углеродного следа.

Не менее удивительны и тихоходки, чем именно они так поражают ученых мы разбирали ранее.

Они обратили внимание на так называемый «комплекс выхода» — сложную сеть взаимосвязанных туннелей, присутствующую в термитниках, и предложили использовать его принципы для обеспечения оптимального потока воздуха, тепла и влаги в архитектуре человеческих построек. Это открывает новые возможности для инноваций в области зданий и вдохновляет на разработку новых подходов в сфере архитектурного проектирования и инженерии.

Термиты и их вклад в архитектуру

Исследование было проведено на макротермах, термитах, которые живут в Намибии. Колонии этих термитов могут быть очень большими, включая более миллиона особей. Они создают термитники, основой которых являются грибные сады. Термиты выращивают эти грибы в симбиозе и потом используют их в качестве пищи.

Внутри термитника царица термитов может продолжать откладывать яйца в течение нескольких десятилетий. Она может производить до 30 000 яиц в день.

Особое внимание исследователей было уделено структуре, которая называется «комплексом выхода». Этот комплекс состоит из сети туннелей шириной от 3 до 5 мм, которые соединяют более широкие внутренние каналы с внешней средой. Во время сезона дождей, который продолжается с ноября по апрель, термитники расширяются и комплекс выхода распространяется по поверхности в сторону севера, чтобы попасть под воздействие солнца в полдень. В остальное время года термитники блокируют выходные туннели. Ученые предполагают, что такая структура позволяет термитам избавляться от избыточной влаги путем испарения и одновременно обеспечивает необходимую вентиляцию. Но как именно это происходит, до конца не ясно.

Но как именно это происходит?

Читайте также: Чем полезны и вредны жуки-пожарники и другие насекомые, живущие в огороде.

Эксперименты со строением зданий

Группа исследователей провела эксперименты, чтобы изучить, как планировка комплекса способствует возникновению колеблющихся или пульсирующих потоков. Их исследования основывались на создании 3D-напечатанной копии фрагмента комплекса «выход», который был собран в дикой природе в феврале 2005 года. Этот фрагмент имел толщину 4 см и объем 1,4 литра, причем 16% составляли туннели.

Почему насекомые Новой Зеландии начали быстро эволюционировать?

Для имитации воздушного потока исследователи использовали динамик, который передавал колебания воздушной смеси через фрагмент, а затем использовали датчик для отслеживания массопереноса. В результате исследования было обнаружено, что наибольший воздушный поток наблюдался в диапазоне частот от 30 Гц до 40 Гц, умеренный поток — в диапазоне от 10 Гц до 20 Гц, а наименьший поток — в диапазоне от 50 Гц до 120 Гц.

Влияние турбуленции на проветривание

Исследование показало, что туннели в комплексе взаимодействуют с ветром, который дует на насыпь, способствуя улучшению циркуляции воздуха для вентиляции. Колебания ветра на определенных частотах вызывают турбулентность внутри туннелей, что помогает удалить газы и избыточную влагу из центра термитника.

Архитекторы обращаются к природе, чтобы понять ее эффективность и эстетику, и применить эти принципы в своих проектах. Например, они могут использовать форму листвы для создания защитной крыши или поверхностей, имитирующих птичьи перья для улучшения аэродинамики зданий.

Турбулентность – это хаотичное движение жидкости или газа, которое происходит, когда поток сильно взволнован и неупорядочен. Вместо того чтобы двигаться в прямых и ровных линиях, жидкость или газ перемещаются в разные стороны, образуя вихри. Можно сказать, что турбулентность – это своего рода "путаница" в потоке, которая делает его непредсказуемым и сложным для анализа и контроля.

При проветривании очень важно поддерживать баланс температуры и влажности внутри здания, обеспечивая выход отработанного воздуха и поступление свежего. Большинство специализированных систем разработаны с учетом этого фактора. Они имеют простой интерфейс, который обеспечивает обмен дыхательными газами на основе разницы концентрации между внутренней и внешней средой, создавая оптимальные условия внутри здания.

Может быть интересно – в Японии нашли гигантского кальмара. Эти создания легли в основу легенд о Кракене.

Авторы исследования провели моделирование выходного комплекса, используя серию 2D-моделей, включая прямые туннели и решетку. Они использовали электромотор для движения колеблющейся массы воды (видимой с помощью красителя) по туннелям и измеряли массовый поток. К их удивлению, они обнаружили, что для достижения циркуляции во всем комплексе требовалось перемещать воздух всего на несколько миллиметров вперед и назад (что соответствует слабым колебаниям ветра). Важно отметить, что необходимая турбулентность возникала только в случае, если планировка туннелей была достаточно решетчатой.

Живые и дышащие здания

Исследователи пришли к выводу, что использование ветровой энергии может обеспечить вентиляцию термитников, даже при слабом ветре.

Одна из важных концепций в современной архитектуре – это биомимикрия, которая изучает и имитирует природные формы, процессы и системы.

Ученые полагают, что будущие здания, созданные с применением передовых технологий, таких как порошковые принтеры, смогут иметь встроенные сети, подобные описанному комплексу. Это позволит эффективно циркулировать воздух с помощью встроенных датчиков и механизмов, потребляющих небольшое количество энергии.

Как вам такие здания? – делитесь своим мнением в нашем Telegram-чате.

В заключение, исследователи отмечают, что мы на пороге перехода к созданию строений, которые будут имитировать природу. Впервые появится возможность создать здание, оживленное и дышащее, способное обеспечить комфортную среду для всех.



Источник новости: hi-news.ru

DimonVideo
2023-06-04T01:14:03Z

Здесь находятся
всего 0. За сутки здесь было 0 человек
Яндекс.Метрика