Вчера OpenAI представила Deep Research – автономного ИИ-агента, способного самостоятельно проводить многоступенчатые исследования в интернете. Deep Research доступен в тарифе Pro с 100 запросами в месяц.
В отличие от обычных поисковых систем, которые возвращают короткие ответы или ссылки за считанные секунды, Deep Research «рассуждает» до 30 минут, проводя глубокий анализ сотен источников, агрегируя данные и синтезируя их в единую, детально задокументированную работу. Такой подход, в теории, позволяет системе выдавать отчеты, сопоставимые по качеству с результатами труда профессионального аналитика.
В основе работы Deep Research лежит принцип автономного планирования исследования. Пользователь вводит запрос, после чего система задает уточняющие вопросы для сбора необходимых деталей. Это позволяет агенту точно понять задачу и разработать план поиска.
После утверждения плана Deep Research последовательно проводит поиск по сотням сайтов, просматривает текст, изображения и PDF-файлы, анализирует и агрегирует найденные данные, а в итоге синтезирует информацию в виде структурированного отчета со ссылками и цитатами. Такой подход кардинально отличается от обычного поиска, где выдача основывается лишь на ранжировании ссылок без детального анализа содержимого и контекста.
Deep Research сочетает в себе возможности веб-браузинга, выполнения Python-скриптов для численного анализа и создания визуализаций, а также анализа прикрепленных пользователем файлов. Это позволяет агенту находить нужные данные, обрабатывать их, строить графики и таблицы, что значительно повышает качество итогового отчета.
Помимо конечного результата, пользователю доступен «сайдбар», в котором отображается цепочка рассуждений агента. Такой уровень прозрачности помогает в фактчекинге.
В тесте Humanity’s Last Exam (более 3 000 вопросов от лингвистики до ракетостроения), Deep Research показал точность 26,6 %. Для сравнения, модели, такие как Grok-2 и GPT-4o, набрали всего 3,8 % и 3,3 % соответственно, а конкурирующая модель Gemini Thinking – 6,2 %. Впечатляющий прогресс.
Вспомните недавний релиз Оператора для выполнения рутинных действий в браузере от OpenAI. Сейчас компания фокусируется на развитии основных агентов, применяемых в практических задачах. Deep Research, Operator и будущие специализированные агенты будут интегрированы в единую мультиагентную систему.
Неужели OpenAI готовят продвинутого агента-программиста, способного самостоятельно обучать ИИ-модели?
Если все эти агенты объединятся в мультиагентную систему, которая сможет проводить исследования, писать код и действовать в интернете как единое целое, мы, возможно, увидим первые признаки общего ИИ (AGI).
Это будет система, способная самостоятельно обучаться, открывать новые знания и действовать в самых разнообразных сферах жизни, а главное, по версии Microsoft, – автономно зарабатывать миллиарды долларов.
Конечно, всем агентам придется пройти «путь становления» по отдельности, но, судя по дорожной карте AGI от OpenAI, Оператор будет «пробивать» третий уровень (автономность), а Deep Research четвертый (инновационность), останется последний (организованность).
Поэтому Deep Research – это не просто инструмент для поиска информации, а фундаментальный шаг к созданию автономных ИИ-агентов, которые могут вывести качество исследований на новый уровень.
Остается только ожидать более массовое появление воплощенных (embodied) агентов, которые будут искать и анализировать информацию не только в интернете, но и в реальном мире в форме роботов.
Этот год для ИИ-агентов обещает быть жарким.
Если вам интересна тема ИИ, подписывайтесь на мой Telegram-канал — там я регулярно делюсь инсайтами по внедрению ИИ в бизнес, запуску ИИ-стартапов и объясняю, как работают все эти ИИ-чудеса.
Источник новости: habr.com